目录
- 示例代码
- 代码解释
- 另一个例子
示例代码
from dataclasses import dataclass
from autogen_core import AgentId, MessageContext, RoutedAgent, SingleThreadedAgentRuntime, message_handler
from autogen_core.model_context import BufferedChatCompletionContext
from autogen_core.models import AssistantMessage, ChatCompletionClient, SystemMessage, UserMessage
from autogen_ext.models.openai import OpenAIChatCompletionClient
@dataclass
class Message:
content: str
class SimpleAgentWithContext(RoutedAgent):
def __init__(self, model_client: ChatCompletionClient) -> None:
super().__init__("A simple agent")
self._system_messages = [SystemMessage(content="You are a helpful AI assistant.")]
self._model_client = model_client
self._model_context = BufferedChatCompletionContext(buffer_size=5)
@message_handler
async def handle_user_message(self, message: Message, ctx: MessageContext) -> Message:
# Prepare input to the chat completion model.
user_message = UserMessage(content=message.content, source="user")
# Add message to model context.
await self._model_context.add_message(user_message)
# Generate a response.
response = await self._model_client.create(
self._system_messages + (await self._model_context.get_messages()),
cancellation_token=ctx.cancellation_token,
)
# Return with the model's response.
assert isinstance(response.content, str)
# Add message to model context.
await self._model_context.add_message(AssistantMessage(content=response.content, source=self.metadata["type"]))
return Message(content=response.content)
runtime = SingleThreadedAgentRuntime()
model_client = OpenAIChatCompletionClient(
model="GLM-4-Air-0111",
api_key = "your api key",
base_url="https://open.bigmodel.cn/api/paas/v4/",
model_capabilities={
"vision": True,
"function_calling": True,
"json_output": True,
}
)
await SimpleAgentWithContext.register(
runtime,
"simple_agent_context",
lambda: SimpleAgentWithContext(model_client),
)
# Start the runtime processing messages.
runtime.start()
agent_id = AgentId("simple_agent_context", "default")
# First question.
message = Message("Hello, what are some fun things to do in Seattle?")
print(f"Question: {message.content}")
response = await runtime.send_message(message, agent_id)
print(f"Response: {response.content}")
print("-----")
# Second question.
message = Message("What was the first thing you mentioned?")
print(f"Question: {message.content}")
response = await runtime.send_message(message, agent_id)
print(f"Response: {response.content}")
# Stop the runtime processing messages.
await runtime.stop()
Question: Hello, what are some fun things to do in Seattle?
Response: Seattle is a vibrant city with a lot to offer! Here are some fun things to do, catering to different interests:
**For the Outdoorsy Type:**
* **Visit Pike Place Market:** This iconic public market is a must-see. Watch fish mongers throw fish, sample local produce, and grab a bite to eat.
* **Explore the Seattle Great Wheel:** Enjoy stunning views of Elliott Bay and the city skyline from this Ferris wheel on the waterfront.
* **Take a walk or bike ride along the Seattle Waterfront:** Enjoy the fresh air, views of the Puget Sound, and attractions like the Seattle Aquarium.
* **Hike the Chirico Trail at Discovery Park:** This 2.8-mile loop offers beautiful views of Puget Sound and the Olympic Mountains.
* **Go kayaking or stand-up paddleboarding:** Rent a vessel and explore the calm waters of Lake Union or the more adventurous Puget Sound.
* **Visit the Japanese Garden at the Seattle Arboretum:** Stroll through this serene 3.5-acre garden featuring winding paths, water features, and traditional Japanese landscaping.
* **Take a day trip to one of the nearby mountains:** Mount Rainier, Mount Baker, and the Cascades offer incredible hiking, scenic drives, and wildlife viewing opportunities.
**For the Culture Enthusiast:**
* **Explore the Museum of Pop Culture (MoPOP):** This museum dedicated to contemporary popular culture is a fun and interactive experience, with exhibits on music, science fiction, and fantasy.
* **Visit the Seattle Art Museum (SAM):** Admire a diverse collection of art from around the world, including Native American art and contemporary works.
* **See a show at the 5th Avenue Theatre or the Paramount Theatre:** Catch a Broadway show or a concert in one of these historic venues.
* **Explore the historic Pioneer Square district:** This area features Victorian-era architecture, art galleries, and unique shops.
* **Visit the Ballard Locks (Hiram M. Chittenden Locks):** Watch boats pass between Puget Sound and the Ship Canal, and enjoy the surrounding park.
* **Attend a festival or event:** Seattle hosts numerous festivals throughout the year, including the Seattle International Film Festival, Bumbershoot, and the Capitol Hill Block Party.
**For the Foodie:**
* **Enjoy a coffee at a local cafe:** Seattle is the birthplace of Starbucks, but you'll find many independent coffee shops offering delicious brews.
* **Try some fresh seafood:** From salmon to Dungeness crab, Seattle is known for its fresh seafood. Canlis, The Pink Door, and Ivar's Acres of Clams are great options.
* **Explore the diverse culinary scene:** Seattle has a wide range of cuisines, from Vietnamese pho to Ethiopian injera. Explore the International District for a variety of options.
* **Visit a food truck pod:** Food truck pods are a great way to sample a variety of cuisines in one location. South Lake Union and Capitol Hill have several pods.
**For the Music Lover:**
* **Visit the Experience Music Project (now part of MoPOP):** This museum celebrates the history of music, with a focus on Seattle's grunge scene.
* **See a live music show:** Seattle has a thriving music scene, with venues like The Crocodile, Neumos, and The Showbox hosting shows almost every night.
* **Explore the Music Row district on 5th Avenue:** This area is home to several music venues, record stores, and other music-related businesses.
**Unique Seattle Experiences:**
* **Ride the monorail:** This historic monorail connects downtown Seattle to the Seattle Center.
* **Visit the Seattle Center:** This park, built for the 1962 World's Fair, features the Space Needle, the International Fountain, and other attractions.
* **Take a Bill Speidel's Underground Tour:** Explore the hidden passages and history beneath the city streets.
* **Go on a whale watching tour:** Several companies offer tours to see orcas and other marine wildlife in Puget Sound.
**Tips for Planning Your Trip:**
* **Best time to visit:** Spring and fall offer pleasant weather and fewer crowds. Summer can be warm and sunny, but also crowded and expensive.
* **Getting around:** Seattle has a good public transportation system, including buses, light rail, and streetcars. Ride-sharing services are also readily available.
* **Book accommodations and activities in advance:** Especially during peak season.
This is just a starting point, and there's much more to discover in Seattle! To help me narrow down the options further, tell me:
* **When are you planning to visit?**
* **How long will you be in Seattle?**
* **What are your interests (e.g., outdoors, food, art, music)?**
* **Who
-----
Question: What was the first thing you mentioned?
Response: The first thing I mentioned in my response about fun things to do in Seattle was **Visit Pike Place Market**.
代码解释
这段代码使用了一个名为 autogen_core
的库,该库通常用于创建和运行基于AI的聊天代理。代码的目的是创建一个简单的代理,它能够上下文感知地回答用户的问题。下面是代码的逻辑和功能的详细解释:
-
导入必要的类和模块:
dataclass
用于定义简单的数据结构。autogen_core
中的AgentId
、MessageContext
、RoutedAgent
、SingleThreadedAgentRuntime
和message_handler
用于创建和管理代理。BufferedChatCompletionContext
用于管理聊天上下文。AssistantMessage
、ChatCompletionClient
、SystemMessage
和UserMessage
用于构建和发送消息。OpenAIChatCompletionClient
是一个用于与OpenAI模型进行交互的客户端。
-
定义
Message
数据类:- 这是一个简单的数据结构,用于存储消息的内容。
-
创建
SimpleAgentWithContext
类:- 这个类继承自
RoutedAgent
,代表一个能够处理消息的代理。 - 构造函数初始化代理的名称、系统消息列表、模型客户端和模型上下文。
handle_user_message
方法是一个异步消息处理器,它接收用户消息,将其添加到模型上下文中,并使用模型客户端生成响应。- 生成的响应被添加回模型上下文,并返回给用户。
- 这个类继承自
-
初始化运行时环境和模型客户端:
runtime
是一个SingleThreadedAgentRuntime
实例,用于管理代理的运行。model_client
是一个OpenAIChatCompletionClient
实例,配置了特定的模型名称、API密钥和基本URL。
-
注册和启动代理:
SimpleAgentWithContext
被注册到运行时环境中,并指定了一个构造函数。- 运行时环境被启动以开始处理消息。
-
发送和接收消息:
- 通过
runtime.send_message
方法发送两个问题给代理,并打印出问题和相应的回答。 - 第一个问题是关于在Seattle的有趣活动。
- 第二个问题是关于代理提到的第一个活动。
- 通过
-
停止运行时环境:
- 一旦消息处理完成,运行时环境被停止。
完成的功能:
- 这段代码创建了一个能够理解上下文的聊天代理,它可以接收用户的问题,并根据之前的对话历史生成相关的回答。
- 该代理使用了一个远程的AI模型(通过
OpenAIChatCompletionClient
)来生成回答。 - 通过将用户的每个问题和代理的回答存储在上下文中,代理能够理解对话的流程并提供更相关的回答。
请注意,为了使代码能够运行,需要确保 autogen_core
和 autogen_ext
库是可用的,并且 OpenAIChatCompletionClient
能够与指定的模型进行通信。此外,代码中使用了异步编程,这意味着它需要在支持异步操作的Python环境中运行。
另一个例子
from dataclasses import dataclass
from autogen_core import AgentId, MessageContext, RoutedAgent, SingleThreadedAgentRuntime, message_handler
from autogen_core.model_context import BufferedChatCompletionContext
from autogen_core.models import AssistantMessage, ChatCompletionClient, SystemMessage, UserMessage
from autogen_ext.models.openai import OpenAIChatCompletionClient
@dataclass
class Message:
content: str
class CodeExplainerAgent(RoutedAgent):
def __init__(self, model_client: ChatCompletionClient) -> None:
super().__init__("A code explainer agent")
self._system_messages = [SystemMessage(content="You are an AI assistant specialized in explaining Python code.")]
self._model_client = model_client
self._model_context = BufferedChatCompletionContext(buffer_size=5)
@message_handler
async def handle_user_message(self, message: Message, ctx: MessageContext) -> Message:
user_message = UserMessage(content=message.content, source="user")
await self._model_context.add_message(user_message)
response = await self._model_client.create(
self._system_messages + (await self._model_context.get_messages()),
cancellation_token=ctx.cancellation_token,
)
assert isinstance(response.content, str)
await self._model_context.add_message(AssistantMessage(content=response.content, source=self.metadata["type"]))
return Message(content=response.content)
runtime = SingleThreadedAgentRuntime()
model_client = OpenAIChatCompletionClient(
model="GLM-4-Air-0111",
api_key="your api key",
base_url="https://open.bigmodel.cn/api/paas/v4/",
model_capabilities={
"vision": True,
"function_calling": True,
"json_output": True,
}
)
await CodeExplainerAgent.register(
runtime,
"code_explainer_agent",
lambda: CodeExplainerAgent(model_client),
)
runtime.start()
agent_id = AgentId("code_explainer_agent", "default")
# 代码解释示例
message = Message("解释以下代码:\n```python\nimport numpy as np\nA = np.array([[1, 2], [3, 4]])\nprint(A.T)\n```")
print(f"Question: {message.content}")
response = await runtime.send_message(message, agent_id)
print(f"Response: {response.content}")
print("-----")
# 继续问上下文相关问题
message = Message("代码中的 `.T` 是什么意思?")
print(f"Question: {message.content}")
response = await runtime.send_message(message, agent_id)
print(f"Response: {response.content}")
await runtime.stop()
Question: 解释以下代码:
```python
import numpy as np
A = np.array([[1, 2], [3, 4]])
print(A.T)
```
Response: 这段代码首先导入了NumPy库,并将其命名为`np`。NumPy是一个用于科学计算的Python库,它提供了一个强大的N维数组对象和一系列用于快速操作数组的函数。
接着,代码创建了一个2x2的NumPy数组`A`,其元素为[[1, 2], [3, 4]]。
最后,代码使用`.T`属性来获取数组`A`的转置,并将其打印出来。`.T`属性是NumPy数组的一个特性,它返回数组的转置视图。对于二维数组,这意味着行和列将互换。
当运行这段代码时,输出将是:
```
[[1 3]
[2 4]]
```
这显示了原始数组`A`的转置,其中第一行[1, 2]变成了第一列,第二行[3, 4]变成了第二列。
-----
Question: 代码中的 `.T` 是什么意思?
Response: 在 NumPy 中,`.T` 属性用于获取数组的转置。转置是一个矩阵操作,它将矩阵的行和列进行互换。例如,如果一个矩阵 `A` 的形状是 `(m, n)`,那么它的转置 `A.T` 的形状将是 `(n, m)`。
在您的代码示例中:
```python
import numpy as np
A = np.array([[1, 2], [3, 4]])
print(A.T)
```
`A` 是一个 2x2 的矩阵:
```
A = [[1, 2],
[3, 4]]
```
应用 `.T` 属性后,我们得到 `A` 的转置:
```
A.T = [[1, 3],
[2, 4]]
```
这里,原来的行变成了列,原来的列变成了行。
对于更高维度的数组,`.T` 同样适用,并且可以结合 `axes` 参数进行更复杂的转置操作,但那超出了您当前代码的范围。对于大多数矩阵操作,简单地使用 `.T` 就足够了。
参考链接:https://microsoft.github.io/autogen/stable/user-guide/core-user-guide/components/model-context.html